Historical Consistent Neural Network ------------------------------------ Module ^^^^^^ .. automodule:: prosper_nn.models.hcnn.hcnn :members: :undoc-members: :show-inheritance: Example ^^^^^^^ .. literalinclude:: ../examples_for_doc/hcnn_example.py :language: python .. code:: python hcnn = models.hcnn.HCNN(5, 1, 20, 5, 1) input = torch.randn(20, 1, 1) past_error, forecast = torch.split(hcnn(input), 20) Reference ^^^^^^^^^ `Zimmermann HG., Tietz C., Grothmann R. (2012) Forecasting with Recurrent Neural Networks: 12 Tricks. In: Montavon G., Orr G.B., Müller KR. (eds) Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science, vol 7700. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35289-8_37 `_ .. _Historical Consistent Neural Network Cell: Historical Consistent Neural Network Cell ----------------------------------------- Module ^^^^^^ .. automodule:: prosper_nn.models.hcnn.hcnn_cell :members: :undoc-members: :show-inheritance: Example ^^^^^^^ .. code:: python hcnn_cell = model.hcnn.HCNNCell(5, 1) observation = torch.randn(1, 1) state = torch.randn(1, 5) outputs = [] for i in range(6): state, output = hcnn_cell(state, observation) outputs.append(output) .. _Historical Consistent Neural Network GRU Variant 3 Cell: Historical Consistent Neural Network GRU Variant 3 Cell ------------------------------------------------------- Module ^^^^^^ .. automodule:: prosper_nn.models.hcnn.hcnn_gru_cell :members: :undoc-members: :show-inheritance: Example ^^^^^^^ .. code:: python hcnn_cell = model.hcnn.HCNN_GRU_3_variant(10, 20) observation = torch.randn(1, 1) state = torch.randn(1, 5) outputs = [] for i in range(6): state, output = hcnn_cell(state, observation) outputs.append(output)